Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 17(9): 1902-1916, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29997151

RESUMO

Multi-agent chemotherapeutic regimes remain the cornerstone treatment for Ewing sarcoma, the second most common bone malignancy diagnosed in pediatric and young adolescent populations. We have reached a therapeutic ceiling with conventional cytotoxic agents, highlighting the need to adopt novel approaches that specifically target the drivers of Ewing sarcoma oncogenesis. As KDM1A/lysine-specific demethylase 1 (LSD1) is highly expressed in Ewing sarcoma cell lines and tumors, with elevated expression levels associated with worse overall survival (P = 0.033), this study has examined biomarkers of sensitivity and mechanisms of cytotoxicity to targeted KDM1A inhibition using SP-2509 (reversible KDM1A inhibitor). We report, that innate resistance to SP-2509 was not observed in our Ewing sarcoma cell line cohort (n = 17; IC50 range, 81 -1,593 nmol/L), in contrast resistance to the next-generation KDM1A irreversible inhibitor GSK-LSD1 was observed across multiple cell lines (IC50 > 300 µmol/L). Although TP53/STAG2/CDKN2A status and basal KDM1A mRNA and protein levels did not correlate with SP-2509 response, induction of KDM1B following SP-2509 treatment was strongly associated with SP-2509 hypersensitivity. We show that the transcriptional profile driven by SP-2509 strongly mirrors KDM1A genetic depletion. Mechanistically, RNA-seq analysis revealed that SP-2509 imparts robust apoptosis through engagement of the endoplasmic reticulum stress pathway. In addition, ETS1/HIST1H2BM were specifically induced/repressed, respectively following SP-2509 treatment only in our hypersensitive cell lines. Together, our findings provide key insights into the mechanisms of SP-2509 cytotoxicity as well as biomarkers that can be used to predict KDM1A inhibitor sensitivity in Ewing sarcoma. Mol Cancer Ther; 17(9); 1902-16. ©2018 AACR.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Sarcoma de Ewing/tratamento farmacológico , Adolescente , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Criança , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Interferência de RNA , Sarcoma de Ewing/enzimologia , Sarcoma de Ewing/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Am J Physiol Renal Physiol ; 302(1): F70-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21975874

RESUMO

Lithium (Li)-induced polyuria is due to resistance of the medullary collecting duct (mCD) to the action of arginine vasopressin (AVP), apparently mediated by increased production of PGE(2). We previously reported that the P2Y(2) receptor (P2Y(2)-R) antagonizes the action of AVP on the mCD and may play a role in Li-induced polyuria by enhancing the production of PGE(2) in mCD. Hence, we hypothesized that genetic deletion of P2Y(2)-R should ameliorate Li-induced polyuria. Wild-type (WT) or P2Y(2)-R knockout (KO) mice were fed normal or Li-added diets for 14 days and euthanized. Li-induced polyuria, and decreases in urine osmolality and AQP2 protein abundance in the renal medulla, were significantly less compared with WT mice despite the lack of differences in Li intake or terminal serum or inner medullary tissue Li levels. Li-induced increased urinary excretion of PGE(2) was not affected in KO mice. However, prostanoid EP(3) receptor (EP3-R) protein abundance in the renal medulla of KO mice was markedly lower vs. WT mice, irrespective of the dietary regimen. The protein abundances of other EP-Rs were not altered across the groups irrespective of the dietary regimen. Ex vivo stimulation of mCD with PGE(2) generated significantly more cAMP in Li-fed KO mice (130%) vs. Li-fed WT mice (100%). Taken together, these data suggest 1) genetic deletion of P2Y(2)-R offers significant resistance to the development of Li-induced polyuria; and 2) this resistance is apparently due to altered PGE(2) signaling mediated by a marked decrease in EP3-R protein abundance in the medulla, thus attenuating the EP3-mediated decrease in cAMP levels in mCD.


Assuntos
Diabetes Insípido Nefrogênico/induzido quimicamente , Cloreto de Lítio/efeitos adversos , Animais , Aquaporina 2/metabolismo , Arginina Vasopressina/efeitos adversos , AMP Cíclico/urina , Dinoprostona/urina , Feminino , Túbulos Renais Coletores/metabolismo , Cloreto de Lítio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Poliúria/induzido quimicamente , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores Purinérgicos P2Y2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...